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J. Phys. A: Math. Gen. 15 (1982) 319-321. Printed in Great Britain 

ADDENDUM 

A remark on invariant symmetric second rank spinors and 
electromagnetic tensors 

V Hussint 
Universitt de Libge, Physique Thtorique et Mathimatique, Institut de Physique au Sart 
Tilman, BLtiment B.5, B-4000 Liege 1, Belgium 

Received 26 June 1981 

Abstract. Invariance conditions on symmetric second rank spinors lead to the deter- 
mination of their non-equivalent kinematical groups. Connections with electromagnetic 
tensors are discussed through Carmeli’s classification. 

In this journal we have recently studied (Beckers and Hussin 1981) invariance 
arguments connecting mixed, second-rank, Hermitian spinors and real four-vectors. 
This analysis illustrates and enhances correspondences between spinors and tensors: 
the above case corresponds to the simplest one, i.e. between a mixed ‘(1, 1)-spinor’ and 
a ‘1-index tensor’ or four-vector (Misner et a2 1973) 

XUA = U~WAA, (1) 

where the uPzjA are the Infeld-Van der Waerden symbols (Infeld and Van der Waerden 
1933, Bade and Jehle 1953). Such a study is of special interest if we recall that the 
four-vector A can be seen as a four-potential (when Maxwell theory is under consi- 
deration). 

Here we want to emphasise another physically interesting correspondence between 
spinors and tensors through invariance arguments. It is well known that skew- 
symmetric second-rank tensors F and symmetric second-rank spinors 77 are in cor- 
respondence (Pirani 1964, Carmeli 1977). We have 

(2) UV AB +  CAB^ U V )  FwV=Uw‘Lf~UV*(C 77 

where 

is the metric spinor. The physical interest lies in the meaning of the tensor F which can 
be seen as the electromagnetic tensor (when Maxwell theory is under consideration). 

Under the Poincar6 group such a spinor 77 transforms in the following usual way 

T’AB(X’)=77’AB[(1 + w ) x  +*]=LA&BD77CD(X) (4) 
where the infinitesimal form of the matrix L can be written 

L=l-’  2(43 ’ 0)  
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and where the U are the well known 2 x 2  Pauli matrices. Following the method 
developed by Beckers and Hussin (1981), § 3, we obtain the following invariance 
conditions on r) 

(n * U)AcqCB(X)+(n U ) B E r / A E ( X )  = 2Dr lA" (X)  (7) 

where D is simply 

D = ( r  4 ) a / a t  + (t4 + rAe) - alar - LY a V. 

Explicitly we obtain: 

(a3 - o)v1 '  + (R' - iR2)r)'2 = 0, 

(R'+iS12)r)11-2Dr)'2+(R1-iR2)r)22 = 0, 191 

( ~ ' + i ~ ' ) r ) ~ ~ - ( ~ ' + 0 ) r ) ~ ~ =  0. 

(8) 

The kinematical groups of a constant and uniform spinor r)(Dr) = 0) can then be easily 
determined by using its form in terms of the basic symmetric spinors (Carmeli 1977) TO, 

7 1 , 7 7 2  defined by 

If r) = v0, the invariance conditions (9) become 

so that the corresponding kinematical group is 

~ ~ = { p " ,  A' = K'  + j 2 ,  = ~ ? - j ~ }  (12)  

where the J and K generators are associated with pure Lorentz rotations and boosts 
respectively. 

If 77 = vl, equations (9) give 

and the kinematical group is simply 

G1 -{P", J 3 ,  IC3}. 

If r )  = v2, we obtain 
a 1 - i R 2 = 0  41+e2=42- . e  1 = o  
n3=0 1 4  4 = e 3 = o  

corresponding to the kinematical group 

G2 z {p", A" = K' - J', A" = K 2  + J  '} 

(13) 

114) 

which is conjugated to Go: the Lie algebras of Go and G;z are isomorphic to each other. 
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So, there exist two non-equivalent structures for the kinematical groups of a 
constant and uniform spinor q. These results correspond to those of Bacry et a1 (1970) 
on constant and uniform electromagnetic tensors F as expected from equation (2). 

Let us now complete the remark in connecting these results with specific physical 
cases. First, let us notice that Carmeli (1977) gave a classification and the canonical 
forms of symmetric spinors 7 with respect to the values of their 7 determinant: 
- if det 7 = 0, the canonical form is 

E O  0 0  
vc=(o o) or v’c=(o €’) 

where E ,  E ‘  are arbitrary complex numbers; 
- if det q # 0, the canonical form is 

Secondly, let us take into account the two types of electromagnetic tensors F = (E, B) 
given by Bacry et al (1970): 
- if E and B are orthogonal, \El = IBI, (for example E = (E, 0, 0), B = (0, E, 0))- 

consequently F admits Go as a kinematical group-we get from Carmeli’s considera- 
tions the associated spinor 

-E 0 
vc=( 0 0 )  

in correspondence with equation (17); 

consequently F admits GI as a kinematical group, we also get 
-if E and B are parallel (along the z axis, for example: E = (0, 0, E), B = (0, 0, B)) 

-iB? = (-;(E - iB) 0 
0 

in correspondence with equation (18). 

Acknowledgment 

We wish to extend our sincere thanks to Professor J Beckers for his kind interest. 

References 

Bacry H, Combe Ph and Richard J L 1970 Nuooo Cimento A 67 267-99 
Bade W L and Jehle H 1953 Reo. Mod. Phys. 3 714-28 
Beckers J and Hussin V 1981 J. Phys. A: M a d  Gen. 14 317-26 
Carmeli M 1977 Group Theory and General Relatioity (New York: McGraw-Hill) ch 8 
Infeld L and Van der Waerden B L 1933 Sitzber. Preuss. Akad. Wiss. Physik-Math. K1 380 
Misner C W, Thorne K S and Wheeler J A 1973 Graoitation (San Francisco: Freeman) p 1151 
Pirani F A E 1964 in Lectures on General Relafioity vol 1 (Brandeis: Prentice-Hall) 


